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An mS-dependent integral transformation procedure from atomic orbital basis to 

localized molecular orbitals is described for spatially extended systems with some 
Abelian symmetry groups. It is shown that exploiting spatial symmetry, the number of 
non-redundant integrals for normal saturated hydrocarbons can be reduced by a factor 
of 2.5-3.5, depending on the size of the system and on the basis. Starting from a list 
of integrals over basis functions in canonical order, the number of multiplications of 
the four-index transformation is reduced by a factor of 2.8-3.5 as compared to that of 
Diercksen's algorithm. It is pointed out that even larger reduction can be achieved if 
negligible integrals over localized molecular orbitals are omitted from the transformation 
in advance. 

1. Introduction 

There exist various methods beyond the Hartree-Fock level (CI, MBFF, 
CCA, etc.) which require two-electron integrals over molecular orbitals (canonical 
or localized). 

Several attempts have been made in this field during the last two decades to 
elaborate efficient procedures. The straightforward m 8 process was modified by 
Tang and Edmiston, who presented an m 5 algorithm [1]. Their method was further 
developed by other authors [2-4]. The utilization of symmetry was discussed by 
Bender [2], Winter et al. [5], and by Pitzer [6]. 

The method of the latter author was extended by several papers (Diercksen 
[7], Almf6f [8], Davidson [9], Pople et al. [10], Saunders and van Lenthe Ell], 
Carsky et al. [12]). Another approach for taking into account spatial symmetry was 
suggested by Dacre [13]. His method to generate symmetry-distinct two-electron 
integrals was extended by Dupuis and King [14] and by Taylor [15]. Dacre's 
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suggestions were utilized in a program package for spatially extended systems with 
Abelian symmetry by one of the present authors (CK) [16-19].  

The four-index transformations were reviewed by Wilson [20]. 
It was pointed out that the use of  localized molecular orbitals (LMOs) in 

spatially extended systems has some advantage over the canonical ones when the 
many-body perturbation theory (MBPT) is applied [21-25].  A special algorithm 
has been published recently [26]. 

In this paper, we study the exploitation of spatial symmetry when LMOs are 
used. 

2. Integral transformation: from atomic orbital basis to LMOs 

In the localized representation of the MBPT, the occupied tpi and the virtual 
orbitals tpa are separately localized by unitary transformations U, V, 

N 

~o i = ~ Uij~o j , i, j = 1, 2 . . . . .  N i, 
j=l  

m 

(~a = E Vabq)b ' 
b=N+l 

a , b = N + l ,  N + 2  . . . . .  m, 

where N is the number of occupied orbitals and m is the number of basis functions. 
Multiplying the direct sum of U and V with the coefficients C/~ of the canonical 
orbitals, we obtain the matrix elements of Tkr of the transformation from atomic 
basis to LMOs. The transformation of the two-electron integrals can be expressed 
in the following form: 

(tPiqgJltPk~°t)= E TirTj;~T~uTtv, (teAl#v), (1) 
r,Z,lz,v 

where 

(t¢~ I #v  ) = f Zr(1)Zz (1)r~21Z/~(2)Zv(2)dvl dt~ 2 

are the integrals over basis functions Z~:, to= 1, 2 . . . . .  m. 
As is well known, direct application of (1) is an m 8 process, but carried out 

in four steps, it becomes an m s procedure [1]. The number of  required operations 
can be further reduced when the permutational symmetry of the integrals and/or the 
spatial symmetry of the system are taken into account [2-13].  We consider only 
spatially extended systems (chain molecules, oligomers, etc.). The spatial symmetry 
of  these systems is usually low: Abelian groups (C2v, C2h, etc.). 

As to the symmetry of the LMOs, there exist two different cases. 

Case (a). All (or most) of the LMOs transform according to the irreducible 
representations of  a subgroup of the symmetry group of the system. The integrals 
can be partitioned into blocks of lower dimension, which are transformed separately. 
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Case (a) seldom occurs for polymers and an efficient reduction of  the number 
of necessary integrals is usually not possible. For example, for all-trans polyacetylene, 
when a and ~ orbitals are separately localized, the plane of the molecule is a 
common symmetry of all the LMOs. As a consequence, integrals (~c I oc )  vanish 
due to the symmetry, but they amount only to 30-45% of the total number. 

Case (b). The LMOs of the system can be partitioned into subsets containing 
one, two and four equivalent functions transforming into each other under the 
symmetry operations of the group of the system. This is usually true for normal 
saturated hydrocarbons. 

(It should be noted that in some cases the LMOs might be completely 
unsymmetrical. These cases will not be considered here.) 

The list of the nonredundant integrals is not determined by the symmetry 
alone, but it is intimately connected to the distribution of the numbers of singly-, 
doubly- and quadruply-equivalent subsets M1, ME, and M4, respectively. The latter 
depend upon the system and upon the basis set used. The partitioning of the LMOs 
for normal saturated hydrocarbons with conventional basis sets is shown in table 1. 
(In the actual calculation, Boys' procedure was used.) 

Table 1 

The number of subsets M 1, M2, M 3 containing 1, 2, 4 equivalent 
LMOs for some normal saturated hydrocarbons (CnHzn+ 2) 
with conventional basis sets. (m is the dimension of the bases.) 

Basis m M l M 2 M 3 

C3H 8 STO-3G 23 1 7 2 
6-31G 43 1 13 4 
6-31G ° 61 3 17 6 

C5H12 STO-3G 37 1 10 4 
6-31G 69 1 18 8 
6-31G ° 99 3 24 12 

C7H16 STO-3G 51 1 13 6 
6-31G 95 1 23 12 
6-31G ° 137 3 31 18 

In what follows, we describe a simple but appropriate procedure which makes 
it possible to collect the list of non-redundant integrals. We use capital letters I, J, 
K, and L to denote the subsets of  LMOs, the members of  which merely permuted 

^ 

(except for a sign) by the symmetry operations of the system Aa, a = 1, 2 . . . . .  g. 
The functions within each subset I are indexed by lower case letters i, j ,  k, l 
= 1, 2 . . . . .  vt as ~P/i. The symmetry operations affect only the second indices and 
never the first ones: 



ll0 E. Kapuy, C. Kozmutza, Spatial symmetry in ab initio calculations 

fi, aqgtl = ~ qgtl,. (2) 

Having only one LMO, ¢Pti, in subset I, we can generate all members of  that 
subset by applying some (or all) symmetry operations of  the group 

.41iq~ll = fP l i ,  i = 1, 2 . . . . .  V I. (3) 

We call operation f~ti the generator of LMO tPti. As an example, in point 
group C2v we have four symmetry operations: E, CE, 0"1, o'2. The singly-equivalent 
functions are invariant (except for a sign) under all symmetry operations. The 
generators of the doubly-equivalent subset are E, C2. The quadruply-equivalent 
subsets are generated by the operations E, C2, 0"1, oz2. 

The set of the vt vj  VK Vt. integrals 

( ¢Pliq~jjl q~KktPU ), i = 1 , 2  . . . . .  vt; j = l ,  2 . . . . .  vj ;  

k = 1, 2 . . . . .  VK; l =  1, 2 . . . . .  VL; (4) 

1, J, K, L fixed, 

are related to each other. They are not all different, i.e. the set contains redundant 
integrals. To pick out the non-redundant ones, we utilize the property that the value 
of  an integral is invariant (except for a sign) under any operation of the symmetry 
group of the system: 

~ia (~titPJjl tPKk~OLI ) = Pzi PJjPKkPLI tPli~Ojjl ~OKkq)Ll ) (5) 

where ~ a Pti,^PJj, P~ck, P~ = g l are the parities of the corresponding LMOs upon 
operation A a . By applying the inverse of the generator of  tPti to all integrals of the 
set (4), we obtain 

, ~1  ( ~Oliq) Jj l (OKktPLl ) = -T- ( q)ll~OJj, I ~OKk'~OLl' )" (6) 

Consequently, the set can be partitioned into nt groups which, apart from the sign 
of the integrals, are equal. This means that each of the groups contains, apart from 
the sign, all the vg vx VL non-redundant integrals of the set (4). The factor of reduction 
due to symmetry is at most 4. Since the factor of reduction due to the permutational 
symmetry is larger: 8, they should be utilized together. A suitable order of the LMO 
indices is the following: singly-equivalent subsets, doubly-equivalent subsets, and 
quadruply-equivalent subsets. We obtain a unique non-redundant list of integrals, 

(~Otv t ~pjil tPKkq~u ), (7) 
if 

L < K , K < I , J < _ I ,  for all j , k , l .  
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Table 2 

The number of non-redundant integrals lrfR when spatial symmetry is exploited, 
and the number of integrals/TOT when only permutational symmetry is utilized 
for some normal saturated hydrocarbons. (R is the ratio IWglIToT in percent.) 

Basis /TOT li~'R R (%) 

C3Hs 

C5H12 

C7H16 

STO-3G 38226 15354 40.17 
6-31G 447931 154410 34.47 
6-31G ° 1788886 585203 32.32 

STO-3G 247456 84781 34.26 
6-31G 2917320 926831 31.48 
6-31G* 12253725 3746993 29.22 

STO-3G 879801 278004 31.60 
6-31G 10411580 3048516 29.28 
6-31G ° 44684331 13071721 28.10 

T h e  n u m b e r  o f  non- redundan t  in tegrals  ove r  L M O s  for  s o m e  no rma l  sa tura ted  

h y d r o c a r b o n s  is shown  in table  2. T h e y  can  be  c o m p a r e d  wi th  those  ob ta ined  b y  
tak ing  into account  the pe rmuta t iona l  s y m m e t r y  on ly  

/TOT = ( m4 + 2m3 + 3m2 + 2rn) / 8. 

T h e  fac tor  o f  reduct ion due to the spat ia l  s y m m e t r y  is 2 . 5 - 3 . 5 ,  inc reas ing  
s lowly  with  the d imens ion  o f  the basis .  

Table 3 

The number of multiplications in four-index transformation when the 
spatial symmetry of the LMOs is taken into account: Ms compared to 
that in Diercksen's algorithm M D [7] for some normal saturated hydrocarbon 
with conventional basis sets. The procedure starts from a permutationally 
non-redundant list of integrals. (Q is the ratio Ms/M D in percent.) 

Basis M s M D Q (%) 

C3H 8 STO-3G 9347430 3316600 35.48 
6-31G 208169665 69146924 33.22 
6-31G ° 1185692929 388946797 32.80 

C5H12 STO-3G 98659723 31742152 32.17 
6-31G 2190417075 669793350 30.58 
6-31G ° 13244826375 3834253863 28.95 

C7H16 STO-3G 486332379 149513436 30.74 
6-31G 10782564600 3097791920 28.73 

The  first  partial  sum is calcula ted for  the " i n c o m p l e t e "  Ivt indices,  the second 

one for  all Jj  indices compat ib le  with inequali t ies  (7), etc. Star t ing f rom a list o f  
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integrals over basis functions in canonical order, the number of multiplications in the 
four steps Ms for some normal saturated hydrocarbons are shown in table 3. These 
can be compared with the number of multiplications of Diercksen's algorithm [7]: 

M D = ( l lm 5 +14m 4 +5m 3 +2m2) /8 ,  

where the spatial symmetry is not exploited. It can be seen that the factor of reduction 
is again 2.8-3.5,  depending on the basis. Starting from a symmetrically non-redundant 
list of integrals over basis functions, the reduction can be further increased [19]. 

3. Discussion 

For small molecules, the symmetry-adapted LMOs have advantages over the 
LMOs giving a shorter non-redundant integral list due to spatial symmetry. The 
factor of reduction can exceed 6. For LMOs the upper bound is 4, which can be 
approached only for larger systems. The advantage of the LMOs manifests itself for 
spatially extended systems because using conventional basis sets, the LMOs are 
localized into different spatial regions. As a consequence, many integrals over 
LMOs can be neglected. It is unnecessary to transform out those integrals which 
will be omitted. 

For linear chain systems, the LMOs can be partitioned into groups and to any 
pair of groups, a unique "order of neighbourhood" can be assigned. Having partitioned 
the LMOs, the classification of the integrals (tpi tpj [ tpk ~Pt) was carried out in the 
following way: if j is the/.tth neighbour of i and l is the vth neighhour of k, and 
# > v, then we consider the integral as the # th  neighbour effect [23-25]. In the 
terms of the energy corrections of the MBPT, the integrals of largest order determine 
the order of the term. It has been shown that, for normal saturated hydrocarbons 
with STO-3G basis set including only zeroth, first and second neighbours, we 
obtained more than 99% of the total second-order correlation energy correction [25]. 
The total number of  integrals necessary for the calculation of the second-order 
correction when the permutational symmetry is taken into account is 

/(2) 1 3.,I2M 2 1 
= ~'"'o"-v + ~" MoMv, 

where Mo and Mv are the number of the occupied and the virtual LMOs, respectively. 
To recover 99% of the second-order correlation energy correction, we need for 
CsH1E 66% of I(~), for C7H16 35% of I (E), for C9H~o 22% of I (E), etc. Since the 
number of LMOs up to a certain "neighbourhood order" is fixed (and independent 
of  the size of the system), the number of  necessary integrals is proportional to m E 
instead of  m 4. The results obtained for all-trans polyenes show that it is also true 
for weakly localizable systems [25]. (In the latter ease, fourth neighbours have to 
be taken into account to recover 99% of the second-order correlation energy correction.) 
Preliminary calculations show that this is essentially valid for larger basis sets, too, 
but some of  the virtual orbitals are only weakly localized. 



E. Kapuy, C. Kozmutza, Spatial symmetry in ab initio calculations 113 

Acknowledgement 

This work was supported by Grant No. OTKA 192(1991). Comments by the 
referee are also aknowledged. 

References 

[1] K.C. Tang and C. Edmiston, J. Chem. Phys. 52(1970)997. 
[2] C.F. Bender, J. Comput. Phys. 9(1972)547. 
[3] M. Yoshimine, J. Comput. Phys. 11(1973)449. 
[4] Ph. Pendergast and W.H. Fink, J. Comput. Phys. 14(1974)286. 
[5] N.W. Winter, W.C. Ermler and R.M. Pitzer, Chem. Phys. Lett. 19(1973)179. 
[6] R.M. Pitzer, J. Chem. Phys. 58(1973)3111. 
[7] G.H.F. Diercksen, Theor. Chim. Acta 33(1974)1. 
[8] J. Alml6f, Int. J. Quant. Chem. 8(1974)915. 
[9] E.R. Davidson, J. Chem. Phys. 62(1974)400. 
[10] J.A. Pople, R. Seeger and R. Krishnan, Int. J. Quant. Chem. $11(1977)149. 
[11] V.K. Saunders and J.H. van Lenthe, Mol. Phys. 48(1983)923. 
[12] P. Carsky, B.A. Hess, Jr. and L.J. Schaad, J. Comput. Chem. 5(1984)280. 
[13] P.D. Dacre, Chem. Phys. Lett. 7(1970)47. 
[14] M. Dupuis and H.F. King, Int. J. Quant. Chem. 11(1977)613. 
[15] P.R. Taylor, Int. J. Quant. Chem. 27(1985)89. 
[16] C. Kozmutza, Theor. Chim. Acta 60(1981)53. 
[17] F. Bartha, E. Kapuy and C. Kozrnutza, J. Mol. Struct. THEOCHEM 122(1985)205. 
[18] C. Kozmutza, J. Mol. Struct. THEOCHEM 123(1985)391. 
[19] C. Kozmutza, J. Comput. Chem. 8(1987)1179. 
[20] S. Wilson, in: Methods in Computational Chemistry, ed. S. Wilson (Plenum Press, New York, 1987), 

pp. 251-309. 
[21] E. Kapuy, Z. Cs6pes and C. Kozmutza, Int. J. CompuL Chem. 23(1983)981. 
[22] E. Kapuy, Z. Cs6pes and C. Kozmutza, Croatica Chem. Acta 57(1984)855. 
[23] E. Kapuy, F. Bartha, F. Bogfir and C. Kozmutza, Theor. Chim. Acta 72(1987)337. 
[24] E. Kapuy, F. Bartha, C. Kozmutza and F. Bogfir, J. Mol. Struct. THEOCHEM 170(1988)59. 
[25] E. Kapuy, F. Bartha, F. Bog~r, Z. Csc~pes and C. Kozmutza, Int. J. Quant. Chem. 38(1990)139; 

E. Kapuy, F. Bog~r, F. Bartha and C. Kozmutza, J. Mol. Struct. THEOCHEM 233(1991)61. 
[26] E. Tf'trst, C. Kozmutza and E. Kapuy, J. Mol. Struct. THEOCHEM 227(1991)93. 


